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Non-equilibrium molecular dynamics simulations of an atomic fluid under shear flow, planar elonga-
tional flow, and a combination of shear and elongational flow are unified consistently with a tensorial
model over a wide range of strain rates. A model is presented that predicts the pressure tensor for a
non-Newtonian bulk fluid under a homogeneous planar flow field. The model provides a quantitative
description of the strain-thinning viscosity, pressure dilatancy, deviatoric viscoelastic lagging, and
out-of-flow-plane pressure anisotropy. The non-equilibrium pressure tensor is completely described
through these four quantities and can be calculated as a function of the equilibrium material constants
and the velocity gradient. This constitutive framework in terms of invariants of the pressure tensor de-
parts from the conventional description that deals with an orientation-dependent description of shear
stresses and normal stresses. The present model makes it possible to predict the full pressure tensor
for a simple fluid under various types of flows without having to produce these flow types explicitly
in a simulation or experiment. © 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4810746]

I. INTRODUCTION

There is significant scientific and industrial interest in
describing the relation between the pressure tensor for non-
Newtonian fluids out of thermodynamic equilibrium and other
quantities, such as the strain rate and the fluid density and
temperature. Such relations would find applications for exam-
ple in petrochemical and biomedical processes or in the flow
of polymer melts. The behavior of simple monoatomic fluids
is not nearly as complex as that for macromolecular fluids and
colloidal system. Yet, even for simple fluids, no relation is
known that accurately predicts the non-equilibrium pressure
tensor for any arbitrary velocity field. Numerous computer
simulations and experimental studies have provided insights
into the behavior of sheared liquids and the normal stresses in
an isotropically compressed liquid, while many other types
of flows are far more difficult to create in a laboratory or
with molecular dynamics simulations. If we are able to pre-
dict the non-equilibrium pressure tensor for any velocity field,
it would reduce the experimental and computational efforts
needed to design and improve fluidic devices. We introduce
a framework in which the pressure tensor can be related to
the flow (strain rate tensor) through carefully chosen invari-
ants of the pressure tensor as a function of the velocity field.
This framework is applied to a range of planar flow types with
different field strengths.

Planar Couette flow (PCF), or (simple) shear, is by far the
most studied and well-understood type of flow. It is perhaps
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the simplest type of flow to study via experiments (e.g., lubri-
cation) as well as with non-equilibrium molecular dynamics
(NEMD). Elongational flows are vorticity-free flows that con-
tain contraction, stretching, or a combination of both. Such
flows occur in several biological and industrial processes (for
example, extrusion and moulding processes), but are gener-
ally rather difficult to study with NEMD simulations or exper-
iments, since the dimensions of the fluid sample or simulation
cell change with time, not allowing continuous deformation.
Special techniques are needed to allow for simulations or ex-
periments that can continue indefinitely, which is much easier
in the case of shear flow. In planar elongational flow (PEF), a
fluid element is compressed in one direction and stretched in
another (perpendicular) direction, while the fluid element is
not deformed in the third direction. If the rates of contraction
and stretching are equal, also called pure shear, the flow is iso-
choric (i.e., the volume of the fluid element is a constant of the
motion). In NEMD simulations of a bulk fluid, the primitive
cell is surrounded by periodic images and the deformation of
the cell follows the streaming motion of the fluid. The min-
imum allowable cell size in each direction is given by twice
the cutoff distance of the interaction potential. If the cell size
becomes too small, particles can interact with their own pe-
riodic image, which leads to non-physical results. Hence, the
maximum simulation time would be limited by the cell size in
the direction of contraction. This limitation on the simulation
time can be avoided if reproducible boundary conditions can
be found that are periodic in space and time. These bound-
ary conditions remap the cell after each time interval τ p, such
that the simulation time is not limited by the deformation, and
sufficient statistics can be accumulated. Kraynik and Reinelt1

introduced such periodic boundary conditions for PEF, based
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on lattice theory. Todd and Daivis2 later applied this method to
NEMD simulations to perform various planar shear-free flows
with longer simulation times than those that were previously
accessible.

In the past, predominantly shear flow3–6 and elonga-
tional flows1, 2, 5, 7–9 have been simulated due to their rela-
tive simplicity. Evans and Heyes8 were the first to perform
NEMD simulations of a fluid under combined elongation
and shear, i.e., mixed flow. They were however limited by
the lack of reproducible periodic boundary conditions valid
for planar mixed flow (PMF) and not all simulations arrived
at a steady state before reaching their maximum simulation
time. Recently, Hunt et al.10 developed suitable boundary
conditions for PMF, based on the approach of Kraynik and
Reinelt.1 These periodic boundary conditions make it possi-
ble to study a wide range of flows that were previously not
feasible to study with molecular dynamics. Hunt et al.,10 and
later Hartkamp et al.,11 performed mixed flow molecular dy-
namics simulations in which the velocity gradient is a linear
combination of those for shear and planar elongational flow

∇u =

⎡
⎢⎣

ε̇ 0 0

γ̇ −ε̇ 0

0 0 0

⎤
⎥⎦ , (1)

where γ̇ = ∂ux/∂y is the shear rate and ε̇ the rate of elon-
gation (stretching if component (∇u)αα > 0, and contraction
if (∇u)αα < 0, where α = x, y, or z). When the shear rate is
zero, γ̇ = 0 and ε̇ �= 0, the flow simplifies to planar elonga-
tional flow and when the elongational rate is zero, ε̇ = 0 and
γ̇ �= 0, the fluid is under shear flow. Shear flow and mixed
flow have a non-zero vorticity that is proportional to the shear
present in the flow ω = γ̇ /2.

The velocity gradient can be homogeneously coupled to
an atomic fluid via the SLLOD equations of motion:12–15

ṙi = pi

mi

+ ri · ∇u, (2)

ṗi = Fi − pi · ∇u − ζpi . (3)

A variant of this set of equations (the so-called DOLLS al-
gorithm) was initially only developed for shear flow and uni-
axial compression.16 Later the SLLOD equations of motion
(Eq. (3) above) were shown to correctly obtain the normal
stress differences3 and proven to be valid for arbitrary homo-
geneous flow.14, 15 The difference in the normal stress differ-
ences between the DOLLS and SLLOD formalisms for planar
shear flow has also been shown in a computational study.17

However, the authors did not account for the effect of the
thermostat on the normal stress differences. Equation (2) rep-
resents the evolution of the position ri of particle i, where pi

is the peculiar (i.e., thermal) momentum with respect to the
streaming motion. The rate of change in position of a parti-
cle depends on the sum of its “thermal” fluctuation velocity
and the streaming velocity at the position of the particle given
by u(ri) = ri · ∇u. Equation (3) is the evolution of the pecu-
liar momentum. The first term on the right-hand side denotes
the sum Fi of the forces on particle i due to other particles.
The second term couples the velocity field to the fluid and the

last term couples the fluid to a heat bath, where ζ is a ther-
mostat multiplier with inverse time units. These equations of
motion result in a homogeneous fluid in which all the parti-
cles are subjected to the same external field (i.e., velocity gra-
dient), and their dynamics is described by the same evolution
equations.

By averaging the microscopic information over time and
space, macroscopic quantities can be computed. For example,
the pressure tensor,

P = 1

V

N∑
i=1

⎛
⎝pipi

mi

+ 1

2

∑
j �=i

rij Fij

⎞
⎠, (4)

where pipi denotes the dyadic product of the peculiar mo-
mentum vectors, rij = ri − rj , and Fij is the interaction force
acting on atom i due to atom j. Positive values of the diagonal
components of the pressure tensor are associated with com-
pression and negative values with tension. The pressure tensor
is (besides the sign convention in some literature) identical to
the stress tensor σ that is more common in rheology and the
solid mechanics literature.18, 19

The structure of this paper is as follows: The simulation
details are presented in Sec. II. An introduction to the deriva-
tion of our proposed model is given in Sec. III. In Sec. IV,
the simulation results are presented and used to calibrate and
validate our model, and the presented model and results are
discussed in Sec. V.

II. SIMULATION DETAILS

We simulate an atomic fluid whose interactions are medi-
ated via the well-known Lennard-Jones (LJ) potential,20 trun-
cated at its minimum-energy distance 21/6σ , where σ is the
interaction length scale, and shifted up by the well-depth ε.
This special version of the truncated and shifted LJ potential is
known as the Weeks-Chandler-Andersen (WCA) potential21

UWCA(r) =
{

4ε
[(

σ
r

)12 − (
σ
r

)6
]

+ ε, r ≤ 21/6σ,

0, r > 21/6σ.
(5)

All physical quantities presented are made dimensionless us-
ing the particle mass m and the LJ scales σ and ε, such
that mass and the LJ scales become identical to unity in the
simulations. The reduced quantities are length rij = r∗

ij /σ ,
number density ρ = ρ∗σ 3/m, temperature T = kBT∗/ε, pres-
sure tensor P = P∗σ 3/ε, strain rate γ̇ = γ̇ ∗(mσ 2/ε)1/2, time
t = t∗(mσ 2/ε)−1/2, and viscosity η = η∗σ 2(mε)−1/2. The
equations of motion are integrated with a fourth-order Gear
predictor-corrector algorithm with a time-step of �t = 0.001
in reduced units.

We have performed NEMD simulations of a fluid con-
taining N = 512 particles. The simulations are performed in
the isokinetic-isochoric ensemble. The fluid density (i.e., the
number of atoms and the system volume are fixed) and tem-
perature are kept at a constant value, while the pressure tensor
can depend on the state point and on the flow. The fluid den-
sity is ρ = 0.8442 and its temperature T = 0.722. The temper-
ature is controlled using a Gaussian isokinetic thermostat.22

This state point is near the triple point that a Lennard-Jones
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fluid with the same parameters would have. This is the most
extensively studied state point for MD simulations of a simple
atomic fluid such as argon or krypton.23 The simulations cor-
respond to combinations of shear rates γ̇ = 0, 0.1, . . . , 0.5
and elongational rates ε̇ = 0, 0.1, . . . , 0.5, such that the com-
binations of both deformations represent simple shear (5×),
planar elongation (5×), and planar mixed flow (25×) simu-
lations. Furthermore, additional shear flow simulations have
been performed at shear rates γ̇ = 0.025, 0.05, and 0.15. The
fluid is first equilibrated to reach a non-equilibrium steady
state followed by a simulation of 500 units of time. The
data are averaged over this steady-state time window and
over ten equivalent simulations with different random initial
configurations.

III. NEWTONIAN PRESSURE TENSOR

Equation (4) describes the pressure tensor for an atomic
bulk fluid. The values in the resulting tensor are known to be
related to the density and temperature of the fluid as well as to
the velocity field. The relation between stresses and the fluid
density and temperature can be described through an equation
of state.24, 25 We concentrate more on finding a constitutive re-
lation that describes how the pressure tensor depends on the
velocity field. As detailed in Sec. II, we perform isochoric
simulations, which correspond to traceless velocity gradients.
Furthermore, we consider planar flows. Equation (1) satisfies
these conditions, with at least one of γ̇ and ε̇ non-zero. We
start our derivation in this section by decomposing and rewrit-
ing the Newtonian pressure tensor, and we proceed with non-
Newtonian pressure tensors in Sec. IV.

Any tensor can be decomposed into an isotropic part and
a (traceless) deviatoric part. For an (idealized) incompressible
Newtonian fluid, under an arbitrary flow type, we can write

PN = p0 I − η0 S, (6)

such that the magnitude of the isotropic equilibrium part is
determined by the hydrostatic pressure p0 and the deviatoric
viscous pressure tensor is given by the product of the strain
rate tensor S and the zero-shear viscosity η0.

The deviatoric pressure tensor can be rewritten in terms
of a diagonal (principal) tensor rotated away from its principal
orientation to the orientation of the pressure tensor.26–28, 56 We
then obtain the product of a scalar to represent the magnitude
of the deviatoric pressure tensor, and a matrix to denote its
orientation. For a Newtonian fluid under any planar flow type
with the velocity and its gradient in the x-y flow plane, Eq. (6)
can be written as

PN = p0 I − η0 s R(φS) · ID · RT (φS), (7)

ID ≡

⎛
⎜⎝

1 0 0

0 −1 0

0 0 0

⎞
⎟⎠ , (8)

R(φ) ≡

⎛
⎜⎝

cos φ − sin φ 0

sin φ cos φ 0

0 0 1

⎞
⎟⎠ , (9)

where s ≡
√

1
2 S : S is the magnitude of the strain rate ten-

sor (S : S is the second scalar invariant of S), φS is the an-
gle between the x-axis and the eigenvector that corresponds
to the maximum eigenvalue of the strain rate tensor, R is a
rotation matrix29 that rotates around the z-axis (perpendic-
ular to the flow plane) in counter-clockwise direction, and
ID is a (traceless) unit deviator matrix. The principal orien-
tation angle of the strain rate tensor for a simple shear flow is
φS = 45◦ and for planar elongational flow it is φS = 0◦. The
orientation angle of the strain rate tensor for a planar mixed
flow depends on the ratio between γ̇ and ε̇ and is given by
φS = tan−1(γ̇ /(2ε̇))/2.

The product of the unit deviator and the scalar pre-factors
denotes the principal deviatoric pressure tensor for a New-
tonian fluid η0sID . The diagonal elements of this term (η0s,
−η0s, 0) are the eigenvalues of the deviatoric pressure tensor,
while the rotation matrix R(φS) consists of the corresponding
eigenvectors. This notation replaces the usual expression in
terms of shear stress and normal stresses by a notation that is
not explicitly dependent on the Cartesian tensor orientation,
but rather on tensor eigenvalues, eigen-system, and the veloc-
ity gradient magnitude.

The Newtonian pressure tensor assumes colinearity of the
pressure tensor and strain rate tensor. This is often not the case
for real fluids, such that φP �= φS, where φP is the angle be-
tween the x-axis and the eigenvector that corresponds to the
principal angle of the deviatoric pressure tensor. The differ-
ence between φP and φS is related to the viscoelasticity of
the fluid and will be discussed in more detail in Sec. IV. An
attempt to describe the pressure tensor of a viscoelastic fluid
simply by replacing φS by φP in Eq. (7) is not enough to accu-
rately describe the pressure tensor of a non-Newtonian fluid;
a more sophisticated model is needed.

Equations (6) and (7) contain the equilibrium values of
the shear-viscosity and hydrostatic pressure, whereas real flu-
ids tend to exhibit shear thinning, pressure dilatancy, and nor-
mal stress differences when they are deformed sufficiently
fast. Thus, this model, in which the viscous pressure (ten-
sor) is a linear function of the shear rate, does not account
for the more complex behavior, such as pressure dilatancy
and normal stress differences, that some fluids exhibit even
at small deformation rates. On the other hand, many exist-
ing models that do account for non-Newtonian phenomena
are limited to only a specific type of flow. There is currently
no simple model that quantifies the pressure tensor for a ho-
mogeneous non-Newtonian shear-thinning fluid subject to an
arbitrary planar velocity gradient, while some less general re-
lations have been developed for granular fluids under simple
shear flow30, 31 or under radial deviatoric strain.32

IV. RESULTS AND DISCUSSION

A. Conventional description and an existing model

We first show simulation results in terms of shear stress
and first normal stress difference, as is conventional. These
quantities are relatively easy to extract from experiments, but
are highly dependent on the type of flow. Figure 1 shows
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FIG. 1. NEMD simulation data of the shear stress (a) and first normal stress difference (b) for a fluid under shear (PCF), elongation (PEF), and planar mixed
flow (PMF) compared to the prediction of the second-order fluid (SOF) model (ρ = 0.8442, T = 0.722).

the shear stress Pxy and the first normal stress difference
N1 = Pyy − Pxx of a WCA fluid plotted against the magni-

tude of the strain rate tensor s ≡
√

1
2 S : S =

√
γ̇ 2 + 4ε̇2. The

open markers denote the simulation results, whereas the filled
markers correspond to a model prediction that is discussed
below. Error bars are not shown since the standard errors are
smaller than the plotted symbols. The average standard devi-
ation of all data points is shown by the vertical bars directly
below the legends. This is a measure for the fluctuations in the
respective quantities. It is immediately clear that the values of
the shown quantities strongly depend on the type of flow. For
example, PCF, PEF, and PMF all show non-zero first normal
stress differences, but no unified picture between the different
flow types.

Nevertheless, the data for Pxy and N1 show trends with
increasing γ̇ and ε̇. The mixed flow data are in agreement
with that reported by Hunt et al.10 The data points on the
x-axis of Figure 1(a) correspond to planar elongational flow
simulations, whereas the data points close to the x-axis of
Figure 1(b) correspond to shear flow simulations. A surprising
observation is that the first normal stress difference increases
with an increasing shear rate for PCF, while it decreases with
an increasing shear rate γ̇ , at a constant elongational rate ε̇,
for PMF. We have found from computer simulations at dif-
ferent state points (data not shown here) that the behavior of
the first normal stress difference strongly depends on the state
point of the fluid. Positive first normal stress differences are
observed for very dense fluids, while the first normal stress
differences become negative towards the semi-dilute regime,
while the temperature is kept constant.

An existing family of models to describe the pressure ten-
sor of non-Newtonian fluids makes use of a nonlinear tenso-
rial approximation as a function of the flow field.33–35 Second-
order fluid (SOF) models are the simplest of such models
that predict non-Newtonian phenomena, such as normal stress
differences and shear dilatancy. These models can be em-
ployed to predict the pressure tensor of a fluid under any
arbitrary flow field. For simple shear, planar elongation, or
planar mixed flow, the second-order fluid prediction can be
compared to NEMD simulation data. One, but by no means

the only one, of these models will be briefly discussed here
and a comparison is made between the prediction and sim-
ulation data for a simple WCA fluid under various planar
flow types to assert that the use of a second-order model is
not suitable to predict the pressure tensor of a shear-thinning
fluid. In this model, equilibrium material constants are used
to quantify the viscous part of the pressure tensor of a non-
Newtonian fluid as a combination of elements that are linear
and quadratic in terms of the deformation rate. Thus, not al-
lowing for non-analytic behavior.

The pressure tensor in a second-order fluid can be de-
scribed by the Rivlin-Ericksen constitutive relation,36

P = p0I − η0S + �1,0

2
A − (�1,0 + �2,0)S2, (10)

A ≡ Ṡ + S · ∇u + (∇u)T · S, (11)

where �1, 0 and �2, 0 are the zero-shear rate first and second
normal stress coefficients and S and A are the strain rate ten-
sor and second Rivlin-Erickson tensor, respectively, where the
second Rivlin-Erickson tensor is a function of the strain rate
tensor and the velocity gradient. Furthermore, Ṡ = 0 in our
case of steady flow denotes the derivative of S with respect to
time.37 This model is very simple, general, and based on the
assumption that the non-equilibrium pressure tensor is ana-
lytic in terms of the deformation rate. The zero-shear rate first
and second normal stress coefficients are defined as

�α,0 = lim
γ̇→0

�α(γ̇ ), α = 1, 2, (12)

where the non-equilibrium first and second normal stress co-
efficients, �1 and �2, are defined as

�1(γ̇ ) = N1

γ̇ 2
= Pyy − Pxx

γ̇ 2
, (13)

�2(γ̇ ) = N2

γ̇ 2
= Pzz − Pyy

γ̇ 2
. (14)

The first two terms on the right-hand side of Eq. (10) rep-
resent the Newtonian part (Eq. (6)), whereas the other two
terms represent the deviation from Newtonian behavior. The
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model predicts that the shear stress and first normal stress dif-
ference under a planar mixed flow are given by

Pxy = γ̇ (η0 + ε̇�1,0), (15)

N1 = γ̇ 2�1,0 + 4ε̇η0. (16)

These expressions clearly show deviations from the Newto-
nian model when the shear rate is non-zero, γ̇ > 0. The pre-
dicted shear stress and first normal stress difference under
planar elongational flow are identical to the Newtonian pre-
diction. In the case of shear flow, the shear stress is simply
Newtonian without shear thinning, while normal stress effects
are accounted for. Combined stress effects arise for planar
mixed flow.

Rather than evaluating the limit in Eq. (12), the zero-
shear rate first normal stress coefficient can be calculated from
time integrals over equilibrium correlation functions, as is de-
scribed in detail by Hartkamp et al.38 Using this method, the
zero-shear rate first normal stress coefficient is calculated as
�1, 0 = 0.69 ± 0.03. The zero-shear rate shear viscosity is cal-
culated as η0 = 2.32 ± 0.01 using the relevant Green-Kubo
expression. The lines in Figure 1 indicate the trends predicted
by the SOF model. The dashed lines correspond to constant
ε̇, whereas the dashed-dotted lines correspond to constant γ̇ .
The assumption of analytic behavior of the pressure tensor is
known to be reasonably accurate at small deformation rates,
but inaccurate for simple fluids at the state point and range of
deformation rates that we study. As γ̇ or ε̇ increases, so does
the deviation from the SOF model prediction due to strain
thinning. The inability of the model to predict the pressure
tensor in the thinning regime makes an alternative approach
desirable.

B. A new tensorial description

A symmetric pressure tensor contains six independent
quantities, in general. This reduces to four independent quan-
tities in the case of a steady-state planar flow, where the only
non-zero shear stress is in the plane of flow. Therefore, the
pressure tensor for a simple atomic fluid under a planar flow
can be uniquely described with a model that contains a mini-
mal four variables.

Rather than looking at the shear stress and first normal
stress difference, we can look at quantities that are only de-
pendent on the magnitude of the strain rate tensor and not
on the type of flow. The thinning behavior that was seen in
the shear stress and the normal stress differences in Figure 1
is related to the viscosity which is the proportionality con-
stant between a driving force and the corresponding resulting
flux.13 An expression for the generalized viscosity can be de-
rived from the steady rate of heat production per unit volume,
as discussed by Hounkonnou et al.,39

η(γ̇ , ε̇) = −P : S
S : S

= −γ̇ Pxy + ε̇N1

γ̇ 2 + 4ε̇2
. (17)

The viscosity computed with this expression is independent of
the choice of the coordinates in the flow plane, as the double
tensor contractions in the numerator and denominator of the
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FIG. 2. Viscosity of a WCA fluid under shear (PCF), elongation (PEF), and
mixed flow (PMF) at state point ρ = 0.8442, T = 0.722. The data are fitted
with a Carreau model, and the equilibrium viscosity η0 and a kinetic theory
prediction are shown at s = 0. The inset contains the same data as a semi-log
plot.

expression imply. When the elongational rate is zero, Eq. (17)
simplifies to the well-known expression for shear viscosity
η = −Pxy/γ̇ , whereas a situation in which the shear rate is
zero results in the elongational viscosity η = N1/(4ε̇).

Figure 2 shows all our viscosity data of a WCA fluid
under shear, elongation, and mixed flows as a function of
s. The viscosity approaches the Newtonian viscosity η0 in
the equilibrium limit (s → 0) and shows a monotonic decay
with the strain rate magnitude. The fact that all data points in
Figure 2 collapse onto a profile that is a function of the strain
rate magnitude s only implies that the viscosity of the WCA
fluid is independent of the flow type. It does, however, depend
on the strength of the deformation rate, which is proportional
to the square root of the rate of energy dissipation. The data
are fitted with a Carreau function40 as η = η0/(1 + cη1 s2)cη2 ,
where η0 = 2.32 ± 0.01 is the zero-shear rate viscosity, cη1

= 21.21, and cη2 = 0.076. The positive power cη2 indicates
that the fluid is shear thinning, whereas a negative number
would correspond to a shear thickening fluid. Note that the
Carreau equation is merely one of the fitting functions possi-
ble. Alternative examples include a simple power law41 or the
Cross model.42 These are not shown here, since an extensive
discussion of viscosity is not our main purpose. For compar-
isons of fitting functions, the reader is directed to Refs. 6 and
43–45. The zero-shear rate viscosity η0 can be compared to a
kinetic theory prediction for a dense fluid of rigid spheres.46

We calculate an effective volume fraction ν = 0.4674 by sub-
stituting our density, temperature, and zero-shear rate viscos-
ity into Eq. (2) from Ref. 46. Using the effective volume frac-
tion, temperature, and equilibrium pressure of the WCA fluid,
the kinetic theory model predicts a zero-shear rate viscosity of
ηKT = 2.18, which is 6.2% smaller than our simulation result.

1. Rotating the pressure tensor to its
principal orientation

We start the derivation of our model by subtracting the
first tensor invariant, i.e., the pressure p = tr(P)/3, from
the diagonal of the pressure tensor. What remains is the
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(traceless) deviatoric pressure tensor PD = P − pI. The pres-
sure is defined as the isotropic mean of the diagonal compo-
nents of the pressure tensor; this is the first tensor invariant.
The intermediate principal stress orientation of the deviatoric
tensor, in a steady planar flow situation, is perpendicular to the
plane of flow (while the major and minor principal stresses lie
in the flow plane). This perpendicularity holds (as confirmed)
within the statistical fluctuations of our data. The orientation
of the deviatoric pressure tensor, which is equal to that of the
full pressure tensor, is then given by a single angle φP be-
tween the x-axis and the eigenvector that corresponds to the
largest eigenvalue of the deviatoric pressure tensor.

The Newtonian model in Eq. (7) expressed the pressure
tensor as a function of s in terms of the principal orientation
angle of the strain rate tensor φS and equilibrium material con-
stants η0 = 2.32 ± 0.01 and p0 = 6.3903 ± 0.0002. Most
fluids behave non-Newtonian when they are subjected to a
sufficiently large deformation rate. The phenomenological
transport coefficients and state variables can deviate from
those predicted by linear response theory or measured from
equilibrium molecular dynamics simulations. Consequently,
the measured values of η and p for a fluid out of equilibrium
can, and often do, deviate from the equilibrium values that
are used in the Newtonian model and the SOF model. These
deviations are due to shear thinning and pressure dilatancy, re-
spectively. Colinearity between the pressure tensor and strain
rate tensor may no longer be assumed for a viscoelastic fluid.
Thus, for a non-Newtonian fluid, η, p, and φP can and will de-
viate from the equilibrium values that were used in the New-
tonian model. Furthermore, an additional parameter may be
required to uniquely describe the four independent non-zero
components of the pressure tensor for a fluid in a planar flow
situation. We first express the deviatoric pressure tensor in
terms of its eigenvalues and its principal orientation (which
is related to its eigenvectors), and then study the relation to
the strain rate tensor.

The constitutive relation in Eq. (7) can be generalized for
a non-Newtonian fluid. Doing so, we have to take into account
that (1) the principal orientation of the deviatoric pressure ten-
sor is not by definition identical to that of the strain rate tensor

and (2) we do not know a priori the eigenvalues of the devi-
atoric pressure tensor, hence, we also cannot directly split the
principal deviatoric pressure tensor in a scalar magnitude and
a unit deviator matrix, as was done in Eq. (7). Without prior
knowledge, we can write the pressure tensor for a fluid under
planar flow as

P = p I + R(φP ) ·

⎛
⎜⎝

−λ1 − λ2 0 0

0 λ1 0

0 0 λ2

⎞
⎟⎠ · RT (φP ),

(18)
where p = p0 + �p is the non-equilibrium pressure and the
eigenvalues of the deviatoric pressure tensor are arranged as
λ1 ≥ λ2 ≥ λ3 = −λ1 − λ2. The order in subscripts is con-
vention, while the order in magnitude of eigenvalues can be
understood by thinking of planar elongational flow, in which
the principal pressure tensor equals the pressure tensor, such
that the diagonal elements of the deviatoric pressure tensor
are equal to its eigenvalues. The stretch in the x-direction re-
sults in the smallest diagonal component of the pressure ten-
sor, while the contraction in the y-direction corresponds to its
largest diagonal component, and the out-of-flow-plane direc-
tion has an intermediate value.

In summary, the model expresses the pressure tensor in
terms of non-equilibrium pressure p, the orientation angle of
the principal deviatoric pressure tensor φP, and two indepen-
dent eigenvalues of the deviatoric pressure tensor, λ1 and λ2.
For further understanding, we study the dependence of these
quantities on the velocity gradient.

2. Description of the non-Newtonian pressure tensor

Figure 3 shows the pressure and the eigenvalues of the
deviatoric pressure tensor as functions of the magnitude of the
strain rate tensor. Both graphs show clear trends with s and no
visible dependency on the flow type. The pressure in Figure
3(a) increases with increasing s. This so-called pressure dila-
tancy is proportional to �p ∝ s3/2 over almost two orders of
magnitude, as shown in the inset. The error bars in the inset
denote the standard deviation of the data points. This propor-
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tionality has been reported in the literature for WCA fluids47

as well as for a Lennard-Jones fluid at the same state point
and comparable deformation rates,48, 49 and for a molten salt
sheared at much higher rates.45 Yet, the power law is based
on a fit and is not based on theoretical arguments. The scal-
ing with the deformation rate is different for very small s;
a different proportionality �p ∝ s2 has been reported for a
WCA fluid near the LJ triple point, sheared at smaller rates
10−8 < γ̇ < 10−2, measured using the transient-time correla-
tion function.49 Our measurements at small deformation rates
are not sufficient to confirm this different trend. The pressure
in Figure 3(a) is fitted to a function of the form p = p0

+ cp s3/2, where p0 is the equilibrium pressure and cp

= 0.7492. The eigenvalues of the deviatoric pressure tensor
(Figure 3(b)) would be (λ1 = η0 s, λ2 = 0, λ3 = −λ1 − λ2

= −η0 s) for a Newtonian fluid. This prediction is shown in
the figure with the dashed-dotted lines. To account for non-
Newtonian phenomena in the plane of flow, an approximation
can be made as (X s, 0, − X s), where the middle eigenvalue
corresponds to the direction perpendicular to the plane of flow
and X is some variable that is determined later. Substituting
Eq. (18) into Eq. (17) gives

η = 2λ1 + λ2

2s
cos(2�φ), (19)

where �φ ≡ φS − φP represents the lagging of the pressure
tensor relative to the strain rate tensor. The term cos(2�φ) is
close to unity for all the data shown here, but this is not the
case for example for a dilute fluid, where a longer relaxation
time leads to a larger lagging angle.57 Equation (19) is exactly
valid for any steady planar flow. If we substitute the estimate
λ1 = X s and λ2 = 0 into Eq. (19), we obtain

X = η

cos(2�φ)
. (20)

This result is shown by the dashed lines in Figure 3(b). How-
ever, this approximation still assumes a zero intermediate
eigenvalue, which is inconsistent with the simulation data.
The data show that the magnitude of the intermediate eigen-
value is a function of s, but is independent of the flow type
(i.e., the data for shear, elongation, and mixed flow all col-
lapse on a single curve that is quantified later). An additional
term can be added to the estimate of the eigenvalues as (X s
+ a, −2a, −X s + a), where the value for a is calculated from
the middle eigenvalue as a = −λ2/2. Note that Eq. (19) re-
mains exactly satisfied. The added correction term a is a mea-
sure for the out-of-flow-plane anisotropy of the pressure ten-
sor. The new functional form for the eigenvalues leads to per-
fect agreement with the simulation data, as shown by the solid
lines in the figure.58

Substituting the found functional form for the eigenval-
ues into Eq. (18) gives

P = p I + R(φP ) ·

⎛
⎜⎝− η s

cos(2�φ)
ID + a

⎛
⎜⎝

1 0 0

0 1 0

0 0 −2

⎞
⎟⎠

⎞
⎟⎠

· RT (φP ). (21)

Since λ2 �= 0, the unit deviator matrix ID is not sufficient for
the description of the deviatoric pressure tensor and we have
gained an additional tensorial term. This term is again written
as the product of a scalar magnitude and a traceless matrix.
The first term represents a planar, but non-colinear, deviatoric
pressure tensor, while the second term quantifies the out-of-
plane anisotropy. Both terms are traceless, and thus deviatoric,
but the second is invariant under rotation in the plane of flow.

The tensor rotation on the right-hand side of Eq. (21) can
be split into a rotation about an angle φS and an additional ro-
tation by the (negative) lagging angle −�φ = φP − φS to ob-
tain the orientation of the pressure tensor φP. We know from
Eqs. (6) and (7) that S = s R(φS) · ID · RT (φS), such that the
pressure tensor can be written as

P = p I − η

cos(2�φ)
R(−�φ) · S · RT (−�φ) +

√
3 aIa,

(22)

Ia ≡ 1√
3

⎛
⎜⎝

1 0 0

0 1 0

0 0 −2

⎞
⎟⎠ , (23)

where Ia is scaled such that the tensor has a scalar magnitude
of 1, exactly like ID . This model contains the four state vari-
ables p, η, �φ, and a, which all are functions of the velocity
gradient. The last term in the model is invariant under rota-
tion around the z-axis and has equal contributions in the x and
y directions.

It must be noted that the diagonal components of ID and
Ia are closely related to the in-plane η− and out-of-plane
η∗ viscosity coefficients50, 51 that can be used as a measure
of non-Newtonian behavior under shear flow. For simple
shear flow, these coefficients are defined as η− ≡ N1/(2γ̇ )
= (Pyy − Pxx)/(2γ̇ ) and η∗ ≡ (Pyy − 2Pzz + Pxx)/(4γ̇ ),
where the occurrences of the normal pressure terms in the
coefficients agree exactly with the diagonals of the planar
and the non-planar terms in Eq. (21), respectively. The out-
of-plane viscosity coefficient η∗ is related to our out-of-plane
anisotropy via η∗ = 6a/(4 s). The data have confirmed that
this relation is not limited to simple shear flow, but is valid
for each of the planar flow types studied.

The parameter a in our model can be fitted against
the magnitude of the strain rate tensor as a = ca s3/2 with
ca = 0.1113. The data for a and the corresponding fit are
shown in Figure 4, where the fit slightly deviates from the data
at small values of s. The inset indicates that the out-of-plane
anisotropy a is almost perfectly proportional to the pressure
dilatancy p − p0, where the ratio between the out-of-plane
viscous stresses and the pressure dilatancy a/(p − p0) ap-
proaches a constant value at large s. The ratio ca/cp is expected
to be much smaller than unity for every planar flow. While
the out-of-flow-plane anisotropy tends to zero for s → 0,
the ratio between a and p − p0 diverges close to s = 0, since
the denominator tends to zero faster than the numerator. The
divergence turns out to be strongly related to the discrepancy
at small s between the data for a and the fit of the data, and is
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thus not considered to be physically meaningful. Alternative,
better fits are not discussed here for the sake of brevity.

So far we have found that the parameters p, η, and a are
independent of the flow type and only depend on the state
point of the fluid and on s. We next study �φ. Figure 5 shows
the orientation angles of the strain rate tensor φS, the pres-
sure tensor φP, and the difference (lag) between both angles
�φ given in degrees. The lag angle is very small relative to
the orientation angles, which makes it hard to measure with
high accuracy. This difference is caused by distortion of the
pair distribution function, which affects the configurational
part of the pressure tensor, while the kinetic part of the pres-
sure tensor remains isotropic. Note that the orientation of the
distorted pair distribution function is by no means identical
to that of the pressure tensor because the contribution that
each interaction has to the pressure tensor depends not only
on the relative position of the atoms but also on the abso-
lute distance between them to determine the magnitude of
the interaction force. Figure 5(b) shows that the lag angle di-
vided by the magnitude of the vorticity ω = γ̇ /2 collapses
onto a single profile. Note that for small ω (and many of the
data points with small values of s) the inaccuracy in the ratio
�φ/ω becomes large. The profile is inversely proportional to

s + b, where b is a constant that is inversely proportional to a
time scale of the fluid in equilibrium, and thus related to the
state point of the fluid. We can write the angle difference as
�φ = cφω/(s + b) with fitting variables cφ = 1.5883 and
b = 0.1824.

Evans et al.52 suggested that the distortion of the mi-
crostructure of the fluid out of equilibrium should be pro-
portional to a phenomenological relaxation time of the fluid.
Similarly to the non-equilibrium structure of the fluid, also
the viscoelastic lagging should be proportional to the re-
laxation time, such that we can write �φ = cφ ω/(s + b)
= τω with τ ∝ cφ/(s + b) = 1/(ατ−1

s + τ−1
0 ), where τ 0

= cφ /b and τ s are competing equilibrium and non-equilibrium
time scales and α is a proportionality constant. Different re-
laxation times can be defined and calculated. Many equilib-
rium and non-equilibrium relaxation times can be defined,
for example, related to the transient response of the pressure
tensor,53 distortion of the pair distribution function,54 or to the
collision frequency.55 For a fluid at equilibrium, for example,
τ 1 ≡ �1, 0/(2η0) = 0.69/(2 × 2.32) = 0.15 was defined.38

3. Constitutive model for non-Newtonian fluid

In summary, the pressure tensor for a WCA fluid near
the LJ triple point and under an arbitrary planar flow field in
the thinning regime can be expressed in terms of four state
variables:

�p = cp s3/2, (24)

η = η0/(1 + cη1 s2)cη2 , (25)

a = ca s3/2, (26)

�φ = cφ ω/(s + b), (27)

where each quantity represents a deviation from Newtonian
behavior, i.e., pressure dilatancy, strain thinning, out-of-plane
pressure tensor anisotropy, and viscoelastic lagging. Substi-
tuting these parameters into Eq. (22) completes the presented
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model. With the fitted parameters, the pressure tensor can be
predicted for a WCA fluid near the LJ triple point for any
given planar velocity gradient. The model contains a total of
six fitting parameters (some of which can be interpreted as
relaxation times) if the equilibrium fluid properties p0 and η0

are known. Alternatively, these also could be included as fit-
ting parameters, which brings the total number to eight. The
latter has been tried with our data as well (not shown). The
fitted values for η0 and p0 were consistent, i.e., within the sta-
tistical uncertainty of our calculated values from equilibrium
molecular dynamics (EMD) simulations.

In order to test the limits and predictive value of our
model, we have performed simulations of a fluid under a
larger deformation rate than that of the previous simulations.
The model is tested for a fluid under a planar elongational
flow with ε̇ = 1.0, such that s = 2. The orientation angle
of the pressure tensor should be zero for planar elongational
flow, the simulation result gives φP = 0.0160 with a larger rel-
ative uncertainty. The agreement between the model and the
simulation results for pressure, viscosity, and anisotropy are
−0.6%, −3.0%, and +0.8%, respectively. This shows that the
model predicts the pressure tensor with high accuracy even at
larger deformation rates. We increase the deformation rate a
little further and test the model for a fluid under planar mixed
flow with γ̇ = ε̇ = 1.0 corresponding to s = √

5 and
φS = 13.28 ◦. The predicted values for p, η, a, and �φP are
all within 4% of the simulation results.

We have also performed simulations for γ̇ = ε̇ = 0.01
(s = √

5 × 10−4) to verify the convergence towards Newto-
nian behavior near equilibrium. We have measured η = 2.33
± 0.02 and p = 6.3897 ± 0.0004, which means that both
quantities agree within the standard error with the values cal-
culated with EMD simulations. Deviations from the Newto-
nian limiting behavior are too small to be measured accurately
from NEMD simulations very close to equilibrium unless
significantly more statistics is accumulated, or alternative
techniques are used to enhance it.11

V. SUMMARY AND CONCLUSIONS

We have presented a framework to predict the pressure
tensor for a fluid under arbitrary steady homogeneous pla-
nar flows. The framework describes the full pressure tensor in
terms of four variables, which is the minimum number of vari-
ables required. The variables involve a quantitative descrip-
tion of non-Newtonian phenomena being strain-rate thinning
viscosity, pressure dilatancy, viscoelastic lagging, and out-of-
plane pressure tensor anisotropy.

Steady-state non-equilibrium molecular dynamics simu-
lations have been performed for a WCA fluid near the LJ
triple point. Simulations for shear flow, planar elongational
flow, and combined shear and elongation show the same de-
viations from Newtonian behavior. All of these results, when
expressed in terms of functions of the driving field strength s,
the vorticity ω, and the equilibrium fluid properties collapse
onto master curves. This shows that the pressure tensor can be
predicted for each planar flow, making it possible to predict
the full pressure tensor for a simple fluid under various types
of planar flows without having to produce these flows explic-

itly in a simulation or experiment. Prior knowledge is required
about the equilibrium properties and the non-equilibrium scal-
ing of the fluid at the state point of interest. This can be easily
obtained from one series of simple shear flow simulations,
only varying s.

We have found that the principal pressure tensor for a
simple atomic fluid is solely dependent on the scalar magni-
tude of the flow field at the chosen state point of the fluid. This
was shown in Figure 3. The Cartesian pressure tensor is also
dependent on the shear rate, the vorticity, and the principal
orientation of the strain rate tensor. However, the orientation
of the pressure tensor is defined relative to the orientation of
the strain rate tensor, not explicitly dependent on the Cartesian
coordinate system.

The non-Newtonian fluid model is calibrated with results
from various simulations over a wide range of deformation
rates. Furthermore, the model was used to predict (extrapo-
late) the pressure tensor for simulations much further away
from equilibrium and very close to equilibrium. The predic-
tions were very accurate for all model variables up to large
deformation rates.

The model is valid for the spatially homogeneous sys-
tems used here, but the same framework should be equally
beneficial for the study of shear-banding or confined fluids
if the model is proven to be locally valid too. Inhomogene-
ity creates a complicated problem, since the state point of the
fluid and thus also the flow properties become functions of
position. The possibility of applying a similar framework to a
confined fluid problem has been investigated in Ref. 27. It can
also straightforwardly be applied, for example, to polymeric
fluids, colloidal systems, ionic liquids, or granular fluids,28

where insight in non-Newtonian behavior would be of great
benefit. Especially in polymeric rheology, many complicated
empirical models exist that require many more parameters and
do not explicitly quantify the deviations from Newtonian be-
havior in a compact formulation and for arbitrary planar ve-
locity gradients as presented here. Our model could simplify
the description of molecular rheology dramatically, although
modifications of the model would be required to appreciate
the various mechanisms that are responsible for the deviations
from Newtonian behavior. For example, the lagging angle of
a molecular fluid would be highly affected by the orientation
and stretching of molecules, and thus related to the size and
internal structure of molecules.

All data presented in this work correspond to a single
density and temperature. The functional forms of all of the
non-Newtonian quantities have been validated at five differ-
ent state points (data not shown here). It was found that the
(fitting) parameters depend strongly on the state point of the
fluid. An extensive study at various state points could provide
more insight in the dependence of the non-Newtonian rheol-
ogy on density and temperature. This study is currently being
undertaken.

A possible next step towards a “complete” description
of the non-Newtonian pressure tensor should be an extension
of the model to allow for transient or time-dependent flows.
This would require an extensive study of relaxation dynam-
ics to non-equilibrium steady states and to equilibrium after
cessation of steady flow. Preliminary studies at a range of
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deformation rates and flow types show consistent relaxation
behavior in the linear response regime, but distinctive differ-
ences when the response is a non-linear function of the defor-
mation rate (i.e., in the shear thinning regime). The range of
deformation rates considered in this study is far into the non-
linear regime, where transient behavior is extremely com-
plicated. In order to attempt an extension towards a time-
dependent description of the pressure tensor, a study with
lower deformation rates is advised.

1A. M. Kraynik and D. A. Reinelt, Int. J. Multiphase Flow 18, 1045 (1992).
2B. D. Todd and P. J. Daivis, Phys. Rev. Lett. 81, 1118 (1998).
3D. J. Evans and G. P. Morriss, Phys. Rev. A 30, 1528 (1984).
4D. J. Evans and G. P. Morriss, Phys. Rev. Lett. 51, 1776 (1983).
5T. A. Hunt and B. D. Todd, J. Chem. Phys. 131, 054904 (2009).
6N. Galamba, C. A. Nieto de Castro, and J. F. Ely, J. Chem. Phys. 122,
224501 (2005).

7B. D. Todd, Phys. Rev. E 58, 4587 (1998).
8M. W. Evans and D. M. Heyes, Mol. Phys. 69, 241 (1990).
9D. M. Heyes, Chem. Phys. 98, 15 (1985).

10T. A. Hunt, S. Bernardi, and B. D. Todd, J. Chem. Phys. 133, 154116
(2010).

11R. Hartkamp, S. Bernardi, and B. D. Todd, J. Chem. Phys. 136, 064105
(2012).

12A. J. C. Ladd, Mol. Phys. 53, 459 (1984).
13D. J. Evans and G. P. Morriss, Statistical Mechanics of Nonequilibrium

Liquids, 2nd ed. (Cambridge University Press, Cambridge, 2008).
14P. J. Daivis and B. D. Todd, J. Chem. Phys. 124, 194103 (2006).
15B. D. Todd and P. J. Daivis, Mol. Simul. 33, 189 (2007).
16W. G. Hoover, D. J. Evans, R. B. Hickman, A. J. C. Ladd, W. T. Ashurst,

and B. Moran, Phys. Rev. A 22, 1690 (1980).
17W. Hoover, C. G. Hoover, and J. Petravic, Phys. Rev. E 78, 046701 (2008).
18J. M. Dealy, J. Rheol. 28, 181 (1984).
19L. Malvern, Introduction to the Mechanics of a Continuous Medium (Pren-

tice Hall, Englewood Cliffs, New Jersey, 1969).
20J. E. Jones, Proc. R. Soc. London, Ser. A 106, 463 (1924).
21J. D. Weeks, D. Chandler, and H. C. Andersen, J. Chem. Phys. 54, 5237

(1971).
22D. J. Evans, W. G. Hoover, B. H. Failor, B. Moran, and A. J. C. Ladd, Phys.

Rev. A 28, 1016 (1983).
23M. F. Pas and B. J. Zwolinski, Mol. Phys. 73, 471 (1991).
24D. A. Kofke, J. Chem. Phys. 98, 4149 (1993).
25L. V. Woodcock, AIChE J. 52, 438 (2006).

26M. Alam and S. Luding, Phys. Fluids 15, 2298 (2003).
27R. Hartkamp, A. Ghosh, T. Weinhart, and S. Luding, J. Chem. Phys. 137,

044711 (2012).
28T. Weinhart, R. Hartkamp, A. R. Thornton, and S. Luding, “Coarse-grained

local and objective continuum description of 3D granular flows down an
inclined surface,” Phys. Fluids (to be published).

29P. K. Kundu, I. M. Cohen, and D. R. Dowling, Fluid Mechanics, 5th ed.
(Elsevier Science, Amsterdam, 2011).

30C. Thornton and L. Zhang, Philos. Mag. 86, 3425 (2006).
31J. Sun and S. Sundaresan, J. Fluid Mech. 682, 590 (2011).
32C. Thornton and L. Zhang, Geotechnique 60, 333 (2010).
33H. Markovitz and B. D. Coleman, Phys. Fluids 7, 833 (1964).
34B. D. Coleman and W. Noll, Arch. Ration. Mech. Anal. 6, 355 (1960).
35P. J. Daivis, M. L. Matin, and B. D. Todd, J. Non-Newtonian Fluid Mech.

147, 35 (2007).
36G. A. Nunez, G. S. Ribeiro, M. S. Arney, J. Feng, and D. D. Joseph,

J. Rheol. 38, 1251 (1994).
37M. Slemrod, Arch. Ration. Mech. Anal. 146, 73 (1999).
38R. Hartkamp, P. J. Daivis, and B. D. Todd, Phys. Rev. E 87, 032155 (2013).
39M. N. Hounkonnou, C. Pierleoni, and J. P. Ryckaert, J. Chem. Phys. 97,

9335 (1992).
40H. Bruus, Theoretical Microfluidics, Oxford Master Series in Condensed

Matter Physics (Oxford University Press, USA, 2007).
41B. D. Todd, Phys. Rev. E 72, 041204 (2005).
42M. M. Cross, J. Colloid Sci. 20, 417 (1965).
43P. Prathiraja, P. J. Daivis, and I. K. Snook, J. Mol. Liq. 154, 6 (2010).
44R. F. Berg, J. Rheol. 48, 1365 (2004).
45J. Delhommelle and J. Petravic, J. Chem. Phys. 118, 2783 (2003).
46J. Jenkins, Granular Matter 10, 47 (2007).
47K. P. Travis, D. J. Searles, and D. J. Evans, Mol. Phys. 95, 195 (1998).
48J. Ge, G. Marcelli, B. D. Todd, and R. J. Sadus, Phys. Rev. E 64, 021201

(2001).
49D. J. Evans and G. P. Morriss, Phys. Rev. A 36, 4119 (1987).
50S. Hess, Physica A 118, 79 (1983).
51S. Hess and H. J. M. Hanley, Int. J. Thermophys. 4, 97 (1983).
52D. J. Evans, H. J. M. Hanley, and S. Hess, Phys. Today 37, 26 (1984).
53R. C. Picu and J. H. Weiner, J. Chem. Phys. 107, 7214 (1997).
54H. J. M. Hanley, J. C. Rainwater, and S. Hess, Phys. Rev. A 36, 1795

(1987).
55S. Luding, Pramana 64, 893 (2005).
56R. Hartkamp, Ph.D. dissertation, University of Twente, 2013.
57This has been confirmed with simulations at different state points;56 data

not shown here.
58The predictive quality of Eqs. (25)–(27), as represented by the green solid

lines, is within 0.5 % of the simulation data.

Downloaded 16 Aug 2013 to 136.186.72.15. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jcp.aip.org/about/rights_and_permissions

http://dx.doi.org/10.1016/0301-9322(92)90074-Q
http://dx.doi.org/10.1103/PhysRevLett.81.1118
http://dx.doi.org/10.1103/PhysRevA.30.1528
http://dx.doi.org/10.1103/PhysRevLett.51.1776
http://dx.doi.org/10.1063/1.3202868
http://dx.doi.org/10.1063/1.1924706
http://dx.doi.org/10.1103/PhysRevE.58.4587
http://dx.doi.org/10.1080/00268979000100171
http://dx.doi.org/10.1016/0301-0104(85)80090-2
http://dx.doi.org/10.1063/1.3489683
http://dx.doi.org/10.1063/1.3684753
http://dx.doi.org/10.1080/00268978400102441
http://dx.doi.org/10.1063/1.2192775
http://dx.doi.org/10.1080/08927020601026629
http://dx.doi.org/10.1103/PhysRevA.22.1690
http://dx.doi.org/10.1103/PhysRevE.78.046701
http://dx.doi.org/10.1122/1.549739
http://dx.doi.org/10.1098/rspa.1924.0082
http://dx.doi.org/10.1063/1.1674820
http://dx.doi.org/10.1103/PhysRevA.28.1016
http://dx.doi.org/10.1103/PhysRevA.28.1016
http://dx.doi.org/10.1080/00268979100101321
http://dx.doi.org/10.1063/1.465023
http://dx.doi.org/10.1002/aic.10676
http://dx.doi.org/10.1063/1.1587723
http://dx.doi.org/10.1063/1.4737927
http://dx.doi.org/10.1080/14786430500197868
http://dx.doi.org/10.1017/jfm.2011.251
http://dx.doi.org/10.1680/geot.2010.60.5.333
http://dx.doi.org/10.1063/1.1711294
http://dx.doi.org/10.1007/BF00276168
http://dx.doi.org/10.1016/j.jnnfm.2007.06.005
http://dx.doi.org/10.1122/1.550542
http://dx.doi.org/10.1007/s002050050137
http://dx.doi.org/10.1103/PhysRevE.87.032155
http://dx.doi.org/10.1063/1.463310
http://dx.doi.org/10.1103/PhysRevE.72.041204
http://dx.doi.org/10.1016/0095-8522(65)90022-X
http://dx.doi.org/10.1016/j.molliq.2010.02.011
http://dx.doi.org/10.1122/1.1807843
http://dx.doi.org/10.1063/1.1535213
http://dx.doi.org/10.1007/s10035-007-0057-z
http://dx.doi.org/10.1080/00268979809483151
http://dx.doi.org/10.1103/PhysRevE.64.021201
http://dx.doi.org/10.1103/PhysRevA.36.4119
http://dx.doi.org/10.1016/0378-4371(83)90178-4
http://dx.doi.org/10.1007/BF00500134
http://dx.doi.org/10.1063/1.2916042
http://dx.doi.org/10.1063/1.474962
http://dx.doi.org/10.1103/PhysRevA.36.1795
http://dx.doi.org/10.1007/BF02704151

